If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4u^2+19u+5=0
a = -4; b = 19; c = +5;
Δ = b2-4ac
Δ = 192-4·(-4)·5
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-21}{2*-4}=\frac{-40}{-8} =+5 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+21}{2*-4}=\frac{2}{-8} =-1/4 $
| 2d-d+4d=20 | | 14v-7v-6v-v+3v=18 | | 19/13-4/7x=5 | | -11v−-3v−8v+-6v+20v=-14 | | i=50 | | 11=6+y | | 15/2=-5v | | 6r-6r+2r=6 | | -6p+7=3(2p-3)-4(-10+p) | | -6/7w=42 | | 13s+4s-13s+s+4s=9 | | x+8=2(x+6) | | 6r−6r+2r=6 | | 4x+122=56 | | 13s+4s−13s+s+4s=9 | | 2v−v+5=20 | | 8u+5u-13u+4u=16 | | 52=5v-8 | | -7y=14/3 | | 7(k+9)=-63 | | 14/3=-7y | | 3v+13=43 | | X-10+13x=-7+8x+9 | | 14z−16z=-16 | | -6/7w=-12 | | p^2+5p-12=0 | | 3v-3v+2v=20 | | x-7/20=7/10 | | 5y+12y+-20y=-18 | | 9x+5-4x+4=-11-5x | | 8s+4s−2s+3s−12s=15 | | 3.2x-7.72=3.8 |